Questions and Answers

Q: What is NEC 240.87?

A: The National Electrical Code (NEC) Section 240.87 was first introduced in the 2011 edition, titled "Noninstantaneous Trip". At the time, it required a means to reduce clearing time when a circuit breaker without an instantaneous trip device was used.

This section required the inclusion of zone-selective interlocking (ZSI), differential relaying, or an "energy-reducing maintenance switching with local status indicator" wherever a circuit breaker without an instantaneous trip was applied. Since a circuit breaker without an instantaneous trip can only operate in either the long-time or short-time regions (not instantaneous), these three methods could help reduce the tripping and clearing time. Because the incident energy from an arc-fault event is directly dependant on the clearing time of the upstream circuit breaker (the time it takes to clear the arcing fault), these methods could reduce the PPE level needed and increase worker safety.

The requirements of this section, however, were seldom applicable since most circuit breakers employ self-protective instantaneous trips that cannot be removed or overridden.

Q: What changed from the 2011 NEC?

A: The 2014 NEC changed the scope of 240.87 substantially. The title, itself, changed from "Noninstantaneous Trip" to "Arc Energy Reduction". The application of the section no longer depends on the presence of an instantaneous device, but is now completely based on the ampere rating of the circuit breaker frame. Any circuit breaker that can be set to 1200A or more (even a 1200A frame that has been adjusted by the trip unit to a rating lower than 1200A) must now implement one of four cited methods or an approved equivalent means to reduce clearing time. This applies to main, feeder and branch circuit breakers – every application. One of the following methods must be provided:

1) ZSI - This system can reduce intentional short-time and ground-fault delays to help reduce the clearing time. Remember that it should be specified and the applicable circuit breakers must be designated on the plans. The ZSI scheme must include, at a minimum, the 1200A (or larger) circuit breaker and the circuit breaker in the tier above it or all the circuit breakers in the tier below it.

2) Differential relaying - This is an outboard system (not in the circuit breaker) consisting of CT's and relays that can detect a possible arc fault and signal the proper circuit breakers to trip via a shunt trip connection. This is generally not a manufacturer-supplied offering and is usually designed by the engineer. Differential relaying is commonly used on medium voltage systems.

3) Energy-reducing maintenance switching with local status indicator - This is an integral feature of the circuit breaker that provides for the installation of a remote switch and an indicator light. When activated, the function should set the circuit breaker's trip unit to "no intentional delay" to reduce the clearing time. Upon leaving the hazardous area the workers turn the switch off, returning the settings to their previous values.

4) Energy-reducing active arc flash mitigation system - This is any one of several special systems that, by one or more detection means (CT's, optical sensors, etc.), automatically helps limit the energy released during an arc-fault event. This method includes "crowbar" type devices that actively introduce additional arcs or short circuits into the circuit to more quickly quench the arcing fault.

5) An approved equivalent means - Any alternative method that affords equivalent safety as the four methods listed above can be evaluated and approved by the Authority Having Jurisdiction. This approval is usually obtained by prior discussion between the engineer or designer and the AHJ.
Q: What does 240.87 actually require for conformance?

A: One of the five acceptable methods listed above must be provided and documented (the notation of its provision in the bill of material is usually sufficient). Because specific levels of performance are not called for in 240.87, the provision of one of the hardware options, or their approved equivalent, is all that is needed and studies or calculations are not required.

Q: What compliant options does Siemens offer today?

A: Siemens offers ZSI integration between the Siemens Sentron, VL and WL families of circuit breakers. Siemens Molded Case Circuit Breakers (MCCBs) and Power Circuit Breakers (PCBs) are compatible on a single network.

Additionally, an option in the Siemens WL circuit breaker is the Dynamic Arc Sentry (DAS). This functionality is available in both UL489 and UL1066 breaker configurations. In conjunction with the ETU776 trip unit, the DAS allows use of a remote switch or proximity sensor to change the trip unit settings to a second parameter set optimized for safety during maintenance operations. With the associated status light, the Siemens DAS system for the WL circuit breaker fulfills the requirements of 240.87 as an “Energy-reducing maintenance switching with local status indicator”. The ability of the WL ETU776 to interface with the Siemens Smart-Gear™ switchgear adds even more flexibility and capability to initiate and monitor the DAS maintenance mode.

Q: Are there other ways to address the changes in NEC 240.87?

A: Yes. One means is to avoid (when possible) 1200A or larger devices. Where two smaller devices can be used (for example, as two of the six disconnect devices allowed for a service entrance), the requirements of additional options would be minimized. Another means is to use fused switches, since fused devices are not covered under NEC Article 240.

Q: What about the Instantaneous Setting?

A: In the 2011 NEC, only applications where an instantaneous device was not present were required to provide additional means to reduce arc-fault energy. In 2014, the wording was changed such that a properly adjusted instantaneous device was not included in the list of approved energy-reducing measures. A properly adjusted instantaneous trip setting - meaning one that is set above the nuisance trip level but below the anticipated arc-fault level - is actually often a more effective means to reduce arc energy than the other four listed measures. Normally, the fastest possible clearing time of a circuit breaker occurs when it operates in its instantaneous region. Siemens circuit breakers have no intentional delay in the instantaneous trip settings. In molded case circuit breakers, this properly-set instantaneous operation will usually clear a fault somewhere between one-third of a cycle and one cycle (approximately 6 to 17ms). By comparison, the four acceptable measures in 240.87 provide the following relative performance:

- **Zone Selective Interlocking** - Depending on the configuration, ZSI reduces the clearing time of a circuit breaker that is operating in its short-time or ground-fault region. In a device equipped with ZSI, a fault current higher than the instantaneous trip setting will cause the device to trip in the instantaneous region with no interaction from the ZSI. If the instantaneous trip is set correctly (as previously defined), the arc will be cleared in the minimum possible time yielding the minimum possible energy. If the instantaneous trip is set above the arc-fault level and an arc fault occurs, the ZSI will operate to insure that no intentional delay is introduced in the first ZSI equipped circuit breaker upstream of the fault. However, ZSI circuitry inherently takes time to operate. For purposes of illustration, consider the case of an arc fault whose magnitude is below the instantaneous trip setting but above the short-time pickup. In this example case, if no blocking signal is received from the downstream circuit breaker (meaning the fault has occurred between the two breakers), the previously set short-time delay (in this example, 300ms) will be reduced to the minimum ZSI operating time of 50ms plus the mechanical opening and clearing time of the circuit breaker. The operation of the ZSI has indeed reduced the arc energy by reducing the time to clear by 250ms (300ms preset – 50ms minimum), however a properly selected instantaneous trip level would even eliminate the 50ms minimum, resulting in faster clearing time under an arc-fault condition.

- **Differential Relaying** - This method requires the use of programmable relays to evaluate multiple currents to detect the presence of an arc fault and actuate the opening of the circuit breaker using a shunt trip. This method can reduce the clearing time of an arc-fault event, however there is an inherently longer current evaluation (large program in the relay as opposed to the program in a very fast solid state trip unit) and a longer actuation time of a shunt-trip coil versus the integrated mag-latch coil used by the trip unit. Depending on the circumstances, a properly set instantaneous device may clear an arc fault more quickly.
• **Energy-reducing Maintenance Switch** - This method is no faster than a true instantaneous trip. Additionally, in order for the maintenance switch to be effective, the maintenance mode instantaneous trip level must be less than the prospective arc-fault current. If the instantaneous level is properly set, having it in a maintenance mode that has a lower instantaneous pickup level makes no difference in the clearing time of the circuit breaker. A properly set instantaneous provides the same level of safety as an engaged maintenance switch and offers the added benefit of continuous protection.

• **Energy-reducing Active Arc Flash Mitigation System** - This category includes active systems such as “crowbar” devices. The clearing time will depend on the active device used, the initiating system (optical, differential relaying, etc.) and the application. In some cases this method may clear an arc fault more quickly than an instantaneous device in a circuit breaker, but this would depend on the circumstances.

The proper setting of an instantaneous device to reduce arc-fault energy depends on the results of a full coordination study that takes into account both the prospective arc-fault current and the inrush / transient load surge (nuisance tripping level). Keep in mind that in applications where the NEC requires Selective Coordination, it may not be possible to have both a proper setting for an instantaneous device and code-mandated Selective Coordination. This is because a common method to achieve Selective Coordination is to select devices such that the instantaneous settings are greater than the available fault current, which is - by definition - above the possible arc-fault current. In those instances, the cited methods in 240.87 may be used to satisfy both sections of the code.

In summary, a properly set instantaneous device with no intentional delay is an effective method to reduce the clearing time and should be considered an equivalent (if not improved) means to the other methods cited in NEC 240.87. This approach was included in the 2011 edition but omitted from the 2014 edition, eliminating one of the most effective means available to reduce the circuit breaker clearing time.

Q: Are there special cases where equivalent protection by an instantaneous device may be possible without requiring a coordination study?

A: 2014 NEC 240.87 requirements apply to any applicable circuit breaker in any application. However, smaller multi-tenant residential installations where there is only a single, large, main circuit breaker (1200A or 1600A, for example) and multiple smaller meter mains sometimes present a unique condition. In these installations, the provision of low voltage power circuit breakers or ZSI for the main and tenant feeder circuit breakers may not be practical, or even sometimes possible. What other opportunities might exist? In some commercial systems, large in-rush requirements (high efficiency step-down transformers and large motors, for example) require tight coordination to make sure the instantaneous trip-levels of larger devices are set high enough to avoid nuisance tripping. The requirements of Selective Coordination can also cause the instantaneous pick-up settings to be at high levels. Smaller multi-tenant residential applications, on the other hand, do not have these sources of high in-rush currents and are generally not subject to Selective Coordination requirements imposed by the NEC.

In many, typical, multi-tenant applications, the in-rush requirements may be below the lowest instantaneous setting of a thermal-magnetic molded case circuit breaker. In fact, it is common to find the main devices in these types of applications with their original factory settings functioning normally after many years of service (for safety purposes, Siemens always ships circuit breakers at their minimum settings). In these cases - where the lowest instantaneous setting for the thermal-magnetic circuit breaker can be used and maintained - permanently keeping the circuit breaker at its lowest instantaneous setting could be thought of as having the same safety effect as having an energy-reducing maintenance switch on all the time. In both cases, the circuit breaker would act with no intentional delay and at the lowest available instantaneous setting. Based on the specific realities of this type of application, it would stand to reason that keeping an instantaneous at its lowest setting could be considered an approved equivalent means.

For this reason, it may be possible for the engineer or design-build designer to approach the AHJ, prior to the project bid, and discuss the possibility of meeting the requirement of an approved equivalent means with this method. The suitability of the settings and methods used and the application requirements are the responsibility of the engineer.
The information provided in this flyer contains merely general descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.